Retinoic acid synthesis controlled by Raldh2 is required early for limb bud initiation and then later as a proximodistal signal during apical ectodermal ridge formation.

نویسندگان

  • Felix A Mic
  • I Ovidiu Sirbu
  • Gregg Duester
چکیده

We present evidence for the existence of two phases of retinoic acid (RA) signaling required for vertebrate limb development. Limb RA synthesis is under the control of retinaldehyde dehydrogenase-2 (Raldh2) expressed in the lateral plate mesoderm, which generates a proximodistal RA signal during limb outgrowth. We report that Raldh2(-/-) embryos lack trunk mesodermal RA activity and fail to initiate forelimb development. This is associated with deficient expression of important limb determinants Tbx5, Meis2, and dHand needed to establish forelimb bud initiation, proximal identity, and the zone of polarizing activity (ZPA), respectively. Limb expression of these genes can be rescued by maternal RA treatment limited to embryonic day 8 (E8) during limb field establishment, but the mutant forelimbs obtained at E10 display a significant growth defect associated with a smaller apical ectodermal ridge (AER), referred to here as an apical ectodermal mound (AEM). In these RA-deficient forelimbs, a ZPA expressing Shh forms, but it is located distally adjacent to the Fgf8 expression domain in the AEM rather than posteriorly as is normal. AER formation in Raldh2(-/-) forelimbs is rescued by continuous RA treatment through E10, which restores RA to distal ectoderm fated to become the AER. Our findings indicate the existence of an early phase of RA signaling acting upstream of Tbx5, Meis2, and dHand, followed by a late phase of RA signaling needed to expand AER structure fully along the distal ectoderm. During ZPA formation, RA acts early to activate expression of dHand, but it is not required later for Shh activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Retinoic acid signaling is required during early chick limb development.

In the chick limb bud, the zone of polarizing activity controls limb patterning along the anteroposterior and proximodistal axes. Since retinoic acid can induce ectopic polarizing activity, we examined whether this molecule plays a role in the establishment of the endogenous zone of polarizing activity. Grafts of wing bud mesenchyme treated with physiologic doses of retinoic acid had weak polar...

متن کامل

Opposing RA and FGF signals control proximodistal vertebrate limb development through regulation of Meis genes.

Vertebrate limbs develop in a temporal proximodistal sequence, with proximal regions specified and generated earlier than distal ones. Whereas considerable information is available on the mechanisms promoting limb growth, those involved in determining the proximodistal identity of limb parts remain largely unknown. We show here that retinoic acid (RA) is an upstream activator of the proximal de...

متن کامل

The limb deformity gene is required for apical ectodermal ridge differentiation and anteroposterior limb pattern formation.

To gain insight into the role of the limb deformity (ld) gene in limb morphogenesis, we examined the morphologic details of early embryonic limb formation in the mutant ld/ld mouse. Initial morphological differences between wild-type and homozygous ld embryos are apparent during early gestational day 10, a time period during which anteroposterior limb morphogenesis occurs. As a result of a shor...

متن کامل

Vertebrate limb development: moving from classical morphogen gradients to an integrated 4-dimensional patterning system.

A wealth of classical embryological manipulation experiments taking mainly advantage of the chicken limb buds identified the apical ectodermal ridge (AER) and the zone of polarizing activity (ZPA) as the respective ectodermal and mesenchymal key signaling centers coordinating proximodistal (PD) and anteroposterior (AP) limb axis development. These experiments inspired Wolpert's French flag mode...

متن کامل

The expression of Flrt3 during chick limb development.

The Flrt3 (Fibronectin-Leucine-Rich Transmembrane protein) gene encodes a fibronectin and leucine-rich repeat transmembrane protein whose expression is controlled by fibroblast growth factors (FGFs). FLRT3 has been implicated in neurite outgrowth after nerve damage, as a positive regulator of FGF signalling and in homotypic cell adhesion. Here we describe Flrt3 expression during chick embryonic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 279 25  شماره 

صفحات  -

تاریخ انتشار 2004